A Tool to Measure the Impact of Inaction Towards Elimination of Hepatitis C Virus: A Case Study in Germany

<u>Markus Cornberg¹</u>, Yuri Sanchez Gonzalez², Andreas Pangerl², Homie Razavi³

BACKGROUND

- Chronic infection with hepatitis C virus (HCV) and its sequelae presents a significant source of human, clinical, economic, and societal burden
- As new therapies for HCV emerge with cure rates greater than 95%, elimination of HCV is attainable provided planning and action is taken to screen and diagnose patients, ensure linkage to care, and provide access to HCV treatment
- The World Health Organization (WHO) has given an elimination target of 2030 for HCV.¹ Therefore, it is important to provide policymakers with data comparing the clinical and economic impact of inaction vs immediate implementation of screening and linkage to care actions vs delaying such interventions

OBJECTIVE

- To develop a predictive model scalable at national, regional, or local levels to assess the clinical and economic impact of implementing screening and treatment policies towards HCV elimination
- Germany was used as a pilot case study since it is one of just nine countries in the world on track to achieve the WHO elimination targets²

METHODS

MARKOV MODEL OF HCV DISEASE PROGRESSION (FIGURE 1) • Impact of Inaction Tool

- Markov disease progression model calibrated to match the size of overall population, prevalence of HCV, and diagnosis coverage
- Future diagnosis and treatment interventions were specified as policy scenarios

Figure 1. Disease Progression Model

• Model inputs

- Annual population and all-cause mortality rate by sex and age group
- Mortality rates were standardized for risk factors present in HCV-infected population
- HCV genotype distribution
- Disease progression rates by liver disease stage, sex, and age group
- Annual number of newly diagnosed patients
- Historic rate of annual liver transplantations due to HCV infection Annual number of antiviral treatments with corresponding sustained virologic response (SVR) rates and liver fibrosis restrictions

Figure 2. Impact of Inaction Tool: Inputs

1 Define the baseline p	opulation			
		National I	Data 2016	Population In
	Size of overall population	80,682	2,351	80,682,35
	Prevalence rate of HCV	0.27%		0.27%
	# of HCV patients	218,510		218,510
	% Diagnosed HCV-infected population 51%		51%	
	# Total diagnosed patients	# Total diagnosed patients 112,456		112,456
 3 Describe the baseline/current policy scenario 5 Run policy scenarios 		National		
	×	Data 2016	Base Case	Scenario 1
	Start year	PLISH	2017	2018
	Scenario name	SCENARIOS	Current Situation	WHO Elimination 2030
	# Annual newly diagnosed patients	4,371	4,371	10,453
	# Annual treated patients	15,000	13,125	17,481
	Fibrosis stage restriction	≥FO	≥FO	≥FO
	Restriction on # of patients eligible for treatment due to budget limitations			
	Average SVR (enter only if different from national data)	90%	90%	98%

Time period

14

HCV, hepatitis C virus; SVR, sustained virologic response

- Prevalence by sex and age based on national survey (DEGS1) and Robert Koch Institute (RKI) monitoring data^{4,5}

- Data entered into the Impact of Inaction tool for the German case study shown in Figure 2
- Model calibration

Primary model outcomes

- subpopulations
- HCV prevalence

Clinical Burden

Cumulative New
Decom
Total ESLD Ave
Total Deaths Ave
Social Burden
Cumulative Incident
Incid
Economic Burd
C
Total Spend
Total Spending on H
Other S
^a The Impact of Ina
for the purnoses of
HCV, hepatitis C vir

¹Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Germany; ²AbbVie Inc., North Chicago, IL, United States; ³Center for Disease Analysis, Lafayette, CO, United States

Presented at the EASL International Liver Congress[™]; 11–15 April 2018; Paris, France

• Data sources

- Overall prevalence estimate for 2012 based on an expert review of the literature³

- Viremic rate for 2012 based on the German health interview and examination survey for adults (DEGS1)⁴
- Genotype distribution based on observational cohort study⁶
- Diagnosis figures based on RKI monitoring data^{5,7}

- Historical incident cases of HCV were calibrated to match modeled prevalence of HCV by sex and age group to to reported prevalence in a given year - The modeled diagnosed cases were calibrated to match the total diagnosed cases reported by the national registry

- Sex and age distributions of the general and HCV-infected populations were assumed to equal the national-level sex and age distributions

- Annual future incident and prevalent cases of HCV by disease stage, sex, and age • Prevalent cases also reported as diagnosed and treatment-eligible

- Future incidence of HCV assumed to be a linear function of

- Annual deaths among HCV-infected population by disease stage, sex, and age • Outputs from the tool are shown in **Figure 3**

SCREENING AND TREATMENT SCENARIOS

• In this case study of Germany, we look at the following scenarios:

- **Base case:** Maintaining the current policies for screening, treatment, and fibrosis restrictions

- Scenario 1: Immediate adoption of WHO targets for elimination of HCV by 2030 - Scenario 2: Delaying elimination intervention by 2 years

Figure 3. Impact of Inaction Tool: Outputs

		Current Situation	WHO Elimination 2030	Delay of Elimination	Scenario 3	Scenario 4
ases (2017–2030)	National Data	Base Case	Scenario 1	Scenario 2	Scenario 3	Scenario 4
ensated Cirrhosis	3,404	2,374	1,077	1,395		
HCC	4,388	3,216	1,515	1,940		
Liver Transplant	68	533	214	283		
ted (vs base case)			3,317	2,505		
Deaths	5,956	2,679	1,237	1,586		
ted (vs base case)			1,442	1,093		

		Current Situation	WHO Elimination 2030	Delay of Elimination	Scenario 3	Scenario 4
ases (2017–2030)	National Data	Base Case	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Incident Cases	62,869	56,865	45,798	48,898		
ent Cases Averted			11,066	7,966		

		Current Situation	WHO Elimination 2030	Delay of Elimination
umulative Costs - EUR (2017–2030)	National Data	Base Case	Scenario 1	Scenario 2
ling on Liver-Related Complications				
ing on Extra-Hepatic Complications				
CV Treatment and Laboratory Costs				
Total Spending on HCV Screening				
pending Related to HCV Treatment				
Total Spending on HCV				
Total Caste Sayod (ve baca casa)				

ction tool is capable of generating economic outcomes, although they were not considered f the current study. ESLD, end-stage liver disease; HCC, hepatocellular carcinoma; rus; WHO, World Health Organization.

RESULTS

Figure 4. HCV Patient Care Status A. Base case: Current Situation

HCV, hepatitis C virus; WHO, World Health Organization

CARE STATUS TRENDS

• Adopting WHO targets now would reduce the number of undiagnosed HCV patients to 444 by 2030, however if this intervention is delayed by 2 years, then 5,215 HCV patients would remain undiagnosed (Figure 4)

SOCIETAL BURDEN

• Adopting WHO targets now would avert 1,721 new HCV cases in 2030 vs the current situation (Figure 5); postponing this intervention by 2 years would fail to avert 260 new HCV cases in 2030

CLINICAL BURDEN

• HCV elimination would substantially reduce new cases of HCV-related complications (Figure 6); postponing this intervention by 2 years would fail to avert 318 new cases of decompensated cirrhosis, 425 new cases of hepatocellular carcinoma, 69 liver transplants, and 349 liver-related deaths by 2030

Figure 5. Annual Incident Cases

DISCUSSION

MODEL STRENGTHS

- A Delphi process was used to verify model inputs. HCV prevalence and genotype data used to build and calibrate each model were scored by quality (in terms of generalizability, sample size, and year of analysis)
- Microsoft Excel was used as a modeling platform due to its transparency and widespread availability
- Model is customizable at national, regional, and local levels. Each country model is standardized to utilize a set of previously published disease progression rates

LIMITATIONS

- Prevalence figures were obtained from the best available estimates in the literature; actual values may vary across settings and patient subgroups
- The predicted outcomes of the model may not reflect observed results • This case study did not generate economic outcomes due to limited
- availability of cost inputs in Germany, although the tool is able to generate them

*Callouts report comparison vs WHO Elimination Scenario. WHO, World Health Organization.

CONCLUSIONS

- regions, and cities are on track to achieve WHO targets for HCV elimination
- status quo. These benefits would be substantially reduced if HCV elimination is delayed by just 2 years

DISCLOSURES

Design, study conduct, and financial support for the study were provided by AbbVie Inc. AbbVie Inc. participated in the interpretation of data and review and approval of the poster.

All authors contributed to the development of the publication and maintained control over the final content.

Markus Cornberg is an employee of Medizinische Hochschule Hannover and is a consultant for AbbVie Inc. He is also a consultant/speaker for Gilead, MSD Sharp & Dohme, Bristol-Myers Squibb, Biogen, and Roche, and his research group has received research support from Roche. Yuri Sanchez Gonzalez and

Andreas Pangerl are employees of AbbVie Inc. and may own AbbVie stock or stock options. Homie Razavi is an employee of Center for Disease Analysis. The Center for Disease Analysis has received funding from AbbVie Inc. for this project.

• This tool can inform physicians, payers, and policymakers on the impact of screening and treatment interventions, and assess whether countries,

• The Impact of Inaction tool is a simple and customizable tool for national, regional, and local use, down to the level of individual clinics and other settings • In this example for Germany, adopting the WHO strategy of HCV elimination now will have important clinical and social benefits vs maintaining the

ACKNOWLEDGMENTS

Medical writing support for poster development was provided by Rebecca Wylie, of Fishawack Facilitate, and funded by AbbVie Inc. Medical writing support was provided by Ivane Gamkrelidze, employee of Center for Disease Analysis, who contributed to the data analysis and/or the drafting of the poster. AbbVie Inc. provided funding for this medical writing support.

REFERENCES

1. World Health Organization (WHO). Combating Hepatitis B and C to Reach Elimination by 2030. Geneva, Switzerland: WHO, 2016. Available from: http://apps.who.int/iris/bitstream/10665/206453/1/WHO_HIV_2016.04_eng.pdf. 2. Polaris Observatory. Available from: http://polarisobservatory.org/. **3.** Bruggmann P, et al. J Viral Hepat. 2014; 21 (Suppl 1): 5–33. 4. Poethko-Muller C, et al. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2013; 56: 707–15. 5. Robert Koch Institute. *Epidemiological Bulletin*. 2012; 38: 371–388. 6. Mauss S, et al. *Gastroenterol*. 2012; 50: 441–4. 7. Robert Koch Institute. SurvStat@RKI 2.0. Transmitted Hepatitis C-cases grouped by reporting category and Reporting year, Germany, Cases in compliance with the reference definition of the RKI; publication deadline: 7/3/2013. Available from: http://www3.rki.de/SurvStat.